PART 4
EXPERT
LAND NAVIGATION
Supplement
WARNING

This presentation is intended as a quick summary, and not a comprehensive resource. If you want to learn Land Navigation in detail, either buy a book; or get someone, who has the knowledge and skills, to teach you in person.
NOTE

To get the ideas across presented on these slides, many figures, pictures, and calculations may not be to scale and may be exaggerated for clarity.
Note:

Prior to being issued any training *equipment, you will be required to sign a “statement of liability” agreeing to pay for anything you damage or lose.

All items will be inspected and inventoried prior to your signature and at the end of the training day too.

If you do not intend to sign this statement, then you may be denied training.

* You may use your own equipment.
Any Questions?
BREAK TIME
LAND NAVIGATION WITH MAP AND LENSATIC COMPASS
Why Learn **Land Navigation**? Training and practicing land navigation on foot provides the following everyday navigation (how not to get lost) benefits:

- **Tracking present location** (Where am I ?)
- **Determining Distance** (How far is it and am I there yet ?)
- **Sense of direction** (Where do I want to go and where am I actually going ?)
- **How to read a topographic map** (Do I understand the map ?)
- **Terrain and map association** (What hill or river am I looking at ?)
- **Spatial skills** (Can I mentally visualize the landscape in 3D ?)
- **Planning safe, practical routes** (Take a long safe route or a short risky route ?)
- **And more Navigational skills**

The best way to learn **LAND NAVIGATION** is to get "dirt time", that is, get out there with a map and compass!

Navigation is not about finding yourself after you are lost (although that’s what happens sometimes); it’s about keeping track of your position as you move away from a known point. As you move you have to remain cognizant of the terrain you are leaving, of the terrain you are passing, and of the terrain that is ahead.

Navigation in the wilderness means knowing your starting point, your destination, and your route to get there. These skills will allow you to venture farther off the beaten path than you ever thought before.
PART 1 Basic Land Navigation
- The Lensatic Compass
- The Topographic Map
- The Land and Map Association

PART 2 Intermediate Land Navigation
- Making Sense of Direction
- Tracking Present Location
- Determining Travel Distance

PART 3 Advance Land Navigation
- Planning to Navigate
- Navigation Methods to Stay On Course
- Additional Skills of Land Navigation

PART 4 Expert Land Navigation
- Navigation in different types of Terrain
- Night Navigation
- Sustainment
Any Questions?
PART 4
EXPERT LAND NAVIGATION

supplement

• Navigating WITHOUT a MAP
 – Description
 – Skills
NAVIGATING WITHOUT A MAP

DESCRIPTION

The LAND NAVIGATION information, concepts, and skills already presented in the other lessons will help you to navigate anywhere in the world.

However, there will be a time when you DO NOT have a map, and all you have is a Lensatic Compass.

With this technique you can navigate, plan your route, stay on course, and keep track of your location from start to finish, at all times.

• There are dozens of situations when you may have to navigate without a map.
• This can make you uneasy. Unless you know what you are doing, and have very high confidence in your navigation skills, without a map.
• Once these skills are mastered, you can even navigate without a compass !!!
NAVIGATING WITHOUT A MAP
Using a Lensatic Compass

This process means using Mathematics and Measurements for navigation; a process for plotting lines or angles on a chart. The technique is based on the CARTESIAN COORDINATE SYSTEM.

With this technique, one can be more precise on their location and never be lost.

This technique is very useful when one does not have a map available.

When going from Point A to Point B, you can travel in any direction/multiple directions, and still reach Point B. You do not have to travel in a straight line to reach Point B. And you do not need a map.

When someone else communicates a location, you can meet them there. Even if both parties do not have a map.

One can establish their position in featured or featureless terrain, foul weather, or even in complete darkness.

Required equipment …

- **Lensatic Compass** (use as a protractor for headings, measurements, and drawing lines on paper)
- **Paper** (water proofed for durability – able to write on and erase)
- **Pencil** (preferably one that can write in rain or wet paper)
- **Calculator** (optional – for adding positive and negative numbers)
- **Protractor** (optional – used to determine direction and draw/plot lines on paper)
- **Plotter Ruler** (optional – similar to a protractor)
- **Mechanical Compass** (optional – for drawing circles)

This technique can also …

- Be used for making an accurate one dimensional map of the area.
- Be used on a topographical map instead of a plotter graph.
- Be used with a number system that two or more people (at different locations) will understand, when communicating via radio or other means of communication, of their location.
- Be used for many other purposes, that you can think of.
NAVIGATING WITHOUT A MAP
Using a Lensatic Compass

This is all you need.

LENSATIC COMPASS
Pencil
Paper
NAVIGATING WITHOUT A MAP

Using a Lensatic Compass

OPTIONAL - Here are some examples of PROTRACTORS and PLOTTER RULERS.

PROTRACTORS

PLOTTER RULERS vary in size and format, but this is a fair representation of one. Notice that there is a protractor on the top. This protractor is marked off in 360 degree segments. The horizontal lines are for orientation with your course, and also have various scales so that the device can be used on a variety of charts that may utilize different measurement scales.

Mechanical Compass
NAVISGATING WITHOUT A MAP

Using a Lensatic Compass

OPTIONAL - Here are some examples of PLOTTERS and GRAPH PAPER.

SEA PLOTTER for ship navigation on water. With an integrated adjustable parallel arm fitted with a moveable compass rose. This permits the direct plotting of magnetic compass courses.

PLOTTER RULERS vary in size and format, but this is a fair representation of one. Notice that there is a protractor on the top. This protractor is marked off in 360 degree segments. The horizontal lines are for orientation with your course, and also have various scales so that the device can be used on a variety of charts that may utilize different measurement scales.

Draw your own Cartesian Coordinate System on blank paper or Graph Paper.

Graph Papers and Coordinate Graphs.
The technique is based on the CARTESIAN COORDINATE SYSTEM.

The following pages will explain how to use this system for land navigation.
NAVGATING WITHOUT A MAP
Using a Lensatic Compass

Here is the basics of using the System.

Step One

1. On a blank sheet of paper draw a Cartesian Coordinate system.
2. Use the Lensatic Compass to draw straight lines and equal tick marks.
3. Number the tick marks as shown.

NOTE
Remember that . . .
LEFT & BOTTOM is negative numbers
RIGHT & TOP is positive numbers
4. Use any number system desired.
5. Also leave space to be able to draw your path traveled.

Also draw path traveled.
NAVIGATING WITHOUT A MAP

Using a Lensatic Compass

Here is the basics of using the System.

Step Two

1. From your current location (A), you decide on a heading of 50° and a distance of 8 units of measurement to (B).

2. Units of measurement can be any desired distance, count, or number system.

 Feet
 Meter
 Time
 Pace Count
 Mile
 Kilometer
 Number System

DIFFERENT UNITS OF MEASUREMENTS

<table>
<thead>
<tr>
<th>Units</th>
<th>Feet</th>
<th>5.5</th>
<th>5</th>
<th>4.5</th>
<th>4</th>
<th>3.5</th>
<th>3</th>
<th>2.5</th>
<th>2</th>
<th>1.5</th>
<th>1</th>
<th>0.5</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>55</td>
<td>50</td>
<td>45</td>
<td>40</td>
<td>35</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>110</td>
<td>100</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>275</td>
<td>250</td>
<td>225</td>
<td>200</td>
<td>175</td>
<td>150</td>
<td>125</td>
<td>100</td>
<td>75</td>
<td>50</td>
<td>25</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>1100</td>
<td>1000</td>
<td>900</td>
<td>800</td>
<td>700</td>
<td>600</td>
<td>500</td>
<td>400</td>
<td>300</td>
<td>200</td>
<td>100</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
NAVIGATING WITHOUT A MAP
Using a Lensatic Compass

Here is the basics of using the System.

Step Three

1. From your current location (A), you decide on a heading of 50° and a distance of 8 units of measurement to (B).

2. Units of measurement can be any desired distance, count, or number system.
 - Feet
 - Meter
 - Time
 - Pace Count
 - Mile
 - Kilometer
 - Number System

3. However, you decide that you DO NOT want to go in a straight line from (A) to (B). But instead, in **multiple directions**.

 Leg 1 = 345° and 3 units

Also draw path traveled.
NAVIGATING WITHOUT A MAP
Using a Lensatic Compass

Here is the basics of using the System.

Step Three

1. From your current location (A), you decide on a heading of 50° and a distance of 8 units of measurement to (B).

2. Units of measurement can be any desired distance, count, or number system.
 - Feet
 - Meter
 - Time
 - Pace Count
 - Mile
 - Kilometer
 - Number System

3. However, you decide that you DO NOT want to go in a straight line from (A) to (B). But instead, in **multiple directions**.

 Leg 1 = 345° and 3 units
 Leg 2 = 105° and 4.5 units

Also draw path traveled.
Here is the basics of using the System.

Step Three

1. From your current location (A), you decide on a heading of 50° and a distance of 8 units of measurement to (B).

2. Units of measurement can be any desired distance, count, or number system.

 - Feet
 - Meter
 - Time
 - Pace Count
 - Mile
 - Kilometer
 - Number System

3. However, you decide that you DO NOT want to go in a straight line from (A) to (B). But instead, in **multiple directions**.

 - Leg 1 = 345° and 3 units
 - Leg 2 = 105° and 4.5 units
 - Leg 3 = 75° and 6 units
 - Leg 4 = 300° and 3.3 units

Also draw path traveled.
NAVIGATING WITHOUT A MAP
Using a Lensatic Compass

Here is the basics of using the System.

Step Three

1. From your current location (A), you decide on a heading of 50° and a distance of 8 units of measurement to (B).

2. Units of measurement can be any desired distance, count, or number system.

 Feet
 Meter
 Time
 Pace Count
 Mile
 Kilometer
 Number System

3. However, you decide that you DO NOT want to go in a straight line from (A) to (B). But instead, in **multiple directions**.

 Leg 1 = 345° and 3 units
 Leg 2 = 105° and 4.5 units
 Leg 3 = 75° and 6 units
 Leg 4 = 300° and 3.3 units

Also draw path traveled.
NAVIGATING WITHOUT A MAP
Using a Lensatic Compass

Here is the basics of using the System.

Step Three

4. Every Time you change directions, draw and write down the …
 - LEG # or Route
 - Heading
 - Units of Measurements

5. Always use Intermediate Landmarks or some reference point, to stay on course.

Also draw path traveled.
Here is the basics of using the System.

Step Four

1. Measure Vertical and Horizontal Distance of **MAIN Route (A) to (B)**.
 - **Vertical** = +4.6

NAVIGATING WITHOUT A MAP

Using a Lensatic Compass
NAVIGATING WITHOUT A MAP

Using a Lensatic Compass

Here is the basics of using the System.

Step Four

1. Measure Vertical and Horizontal Distance of MAIN Route (A) to (B).
 - Vertical = +4.6
 - Horizontal = +6.5

This is the MAIN V +4.6, H +6.5 numbers

Also draw path traveled.
NAVIGATING WITHOUT A MAP
Using a Lensatic Compass

Here is the basics of using the System.

Step Four

1. Measure Vertical and Horizontal Distance of **MAIN Route** (A) to (B).
 - Vertical = +4.6
 - Horizontal = +6.5

 This is the **MAIN V +4.6, H +6.5** numbers

2. Next measure **LEGS** Vertical and Horizontal

 Leg 1
 - Vertical = +2.9
 - Horizontal = -0.7

 Leg 2
 - Vertical = -1.5
 - Horizontal = +4.1

 Leg 3
 - Vertical = +1.5
 - Horizontal = +5.8

 Leg 4
 - Vertical = +1.7
 - Horizontal = -2.9

Also draw path traveled.

PART 4 Expert Land Navigation Supplement
NAVIGATING WITHOUT A MAP
Using a Lensatic Compass

Here is the basics of using the System.

Step Five

1. SUM all the **LEG Verticals**
 SUM all the **LEG Horizontals**

 Leg 1
 - Vertical = +2.9
 - Horizontal = -0.7

 Leg 2
 - Vertical = -1.5
 - Horizontal = +4.1

 Leg 3
 - Vertical = +1.5
 - Horizontal = +5.8

 Leg 4
 - Vertical = +1.7
 - Horizontal = -2.9

 Verticals = (+2.9)+(-1.5)+(1.5)+(+1.7) = +4.6
 Horizontals = (-0.7)+(+4.1)+(+5.8)+(-2.9) = +6.5

2. The LEG Vertical and Horizontal totals will equal the **MAIN Route (A) to (B)**.
 - Vertical = +4.6
 - Horizontal = +6.5

 This is the **MAIN V +4.6, H +6.5** numbers
NAVIGATING DIFFERENT TERRAINS

DEAD RECKONING (advanced – compass and plotter)

Here is the basics of using the System.

1. Why are these numbers important?

Verticals = (+2.9)+(-1.5)+(1.5)+(1.7) = +4.6
Horizontals = (-0.7)+(4.1)+(5.8)+(-2.9) = +6.5

The LEG Vertical and Horizontal totals equaled the MAIN Route (A) to (B).
 Vertical = +4.6
 Horizontal = +6.5

2. Suppose you only traveled LEGS 1 thru 3 . . .
 ▪ Stopped to radio in your position
 ▪ Decided to head to a new location other than (B)
 ▪ Wanted to know what heading and distance to (B) is, from current location at end of LEG 3.
 ▪ Decided to head back to Point (A).

Also draw path traveled.
NAVIGATING DIFFERENT TERRAINS
DEAD RECKONING (advanced – compass and plotter)

Here is the basics of using the System.

1. With only LEGS 1 thru 3 traveled. Add the Verticals and Horizontals.

 Verticals = (+2.9)+(-1.5)+(+1.5) = +2.9
 Horizontals = (-0.7)+(+4.1)+(+5.8) = +9.2

 The LEG Vertical and Horizontal totals DO NOT EQUAL the MAIN Route (A) to (B).
 Vertical = +4.6
 Horizontal = +6.5

2. Draw a Vertical Plotter Line that equals +2.9 and a Horizontal Plotter Line that equals +9.2.

3. Where the Plotter Lines cross, this is your current location (Θ), in relation to Points (A) and (B).

4. Now you can plan your next LEG or Route to travel.

Also draw path traveled.
NAVIGATING DIFFERENT TERRAINS

DEAD RECKONING (advanced – compass and plotter)

Here is the basics of using the System.

SCENARIO one

You wanted to know what heading and distance to (B) is, from current location at end of LEG 3. This would be LEG 4 calculation.

1. With the Lensatic Compass laid out from current location (o) to Point (B), you can get the Heading and Units of Measurement.

 Leg 4 = 300° and 3.3 units

2. This would be LEG 4 calculations. Now you have the directions to get to Point (B).

3. And to measure LEG 4 Vertical and Horizontal numbers, just draw LEG 4 from zero.

 Leg 4
 Vertical = +1.7
 Horizontal = -2.9

Also draw path traveled.
NAVIGATING DIFFERENT TERRAINS

DEAD RECKONING (advanced – compass and plotter)

Here is the basics of using the System.

SCENARIO two
You decided to head back to Point (A). This would be a NEW LEG 4 calculation.

1. With the Lensatic Compass laid out from current location (●) to Point (A), you can get the Heading and Units of Measurement.

 NEW LEG 4 = 255° and 9.6 units

2. This would be LEG 4 calculations. Now you have the directions to get back to Point (A).

3. But you want to verify your calculations... (see next page)

Also draw path traveled.
NAVIGATING DIFFERENT TERRAINS
DEAD RECKONING (advanced – compass and plotter)

Here is the basics of using the System.

SCENARIO two (continued)

You decided to head back to Point (A). This would be a **NEW LEG 4 calculation**.

BUT you want to verify your calculations . . .

4. With the Lensatic Compass laid out at the center (**zero**), draw **LEG 4 Heading** and Units of Measure.

NEW LEG 4 = 255° and 9.6 units

Also draw path traveled.
NAVIGATING DIFFERENT TERRAINS

DEAD RECKONING (advanced – compass and plotter)

Here is the basics of using the System.

SCENARIO two (continued)
You decided to head back to Point (A). This would be a NEW LEG 4 calculation.

BUT you want to verify your calculations . . .

4. With the Lensatic Compass laid out at the center (zero), draw LEG 4 Heading and Units of Measure.

 NEW LEG 4 = 255° and 9.6 units

5. Next, measure the Vertical and Horizontal numbers. LEG 4 = V -2.9, H -9.2

6. Add LEG 4 numbers to LEGS 1 thru 3 (LEG 1 thru 3 = V +2.9, H +9.2)

7. The total is zero, which equals Point (A) zero. Calculations are correct and you will be back to Point (A).

Also draw path traveled.
NAVIGATING DIFFERENT TERRAINS
DEAD RECKONING (advanced – compass and plotter)

Here is the basics of using the System.

SCENARIO three
You decided to head to a new location other than Point (B). You want to go to Point (C) from current location (●). This would be a NEW ROUTE or LEG, it is your choice.

1. With the Lensatic Compass laid out from current location (●) to Point (C), you can get the Heading and Units of Measurement.

 NEW ROUTE = 195° and 8 units

2. Now you have directions to get to Point (C).

Also draw path traveled.
NAVIGATING DIFFERENT TERRAINS

DEAD RECKONING (advanced – compass and plotter)

Here is the basics of using the System.

SCENARIO three (continued)

Now you want to know the Heading and Units of Measurements from Point (C) to Point (A).

3. With the Lensatic Compass laid out from end of Point (C) to Point (A), you can get the Heading and Units of Measurement.

 DIRECTION to Point (A) = \(305^\circ\) and 8.4 units

4. Now you have directions to get to Point (A).

 ![Diagram showing navigation with compass and plotter](image-url)

 Also draw path traveled.
NAVIGATING DIFFERENT TERRAINS
DEAD RECKONING (advanced – compass and plotter)

Here is the basics of using the System.

SCENARIO three (continued)

Now you want to know the Vertical and Horizontal numbers of Point (C).

5. Next, draw the Cartesian Coordinate system at your current location (*) for zero.

6. Measure Vertical and Horizontal numbers.
 \[V = -7.6 \quad H = -2.2 \]

7. Start the process again for new travel path.

Also draw path traveled.
NAVIGATING DIFFERENT TERRAINS

DEAD RECKONING (advanced – compass and plotter)

Here is the basics of using the System.

NOTE

If you have noticed, I drew the paths taken, as I traveled.

exact HEADINGS
exact UNITS OF MEASUREMENT

If you give yourself room on the sheet of paper, you can draw your path to exact scale that matches the Cartesian Coordinate graph, as you plot and calculate numbers.

Also draw path traveled.
NAVIGATING DIFFERENT TERRAINS

DEAD RECKONING (advanced – compass and plotter)

You decide how you want to design your PLOTTER CHART / COORDINATE GRAPH.

On the next page is MY EXAMPLE of a coordinate graph and plotter chart, combined with other data entries.

(The next several pages will be explained on how to use it)
FINISH POINT = V ____, H ____ / LOCATION : __

V = ____, ____, ____, ____, ____, ____, ____, ____, ____, ____, ____, ____, ____, ____, ____, ____, ____ = ___

H = ____, ____, ____, ____, ____, ____, ____, ____, ____, ____, ____, ____, ____, ____, ____, ____, ____ = ___

NOTES

START POINT

<table>
<thead>
<tr>
<th>#</th>
<th>L/R</th>
<th>Heading</th>
<th>Start</th>
<th>Stop</th>
<th>Elapse Time</th>
<th>Speed</th>
<th>UNITS</th>
<th>Terrain Features / NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNITS OF MEASURE SCALE

- UNITS = yards or meters
- UNITS = miles or kilometers
- UNITS = foot steps or clock time
- UNITS = any measurement desired

PLOTTER

- Units of measure scale
 - Units = yards or meters
 - Units = miles or kilometers
 - Units = foot steps or clock time
 - Units = any measurement desired

N

NOTES

Start = Fork in Trail

Travel plan 142° / 250 Yards

Intermediate Landmarks used to stay on course.

- Speed was calculated as group speed (3 people in group).
- Pond from camp is 168° / 130 yards.

DISCOVERED WATERFALL
(took 30 min rest)

DISCOVERED POND WITH FISH

CROSSED SWAMP (bush too thick to go around / swamp ankle deep)

DISCOVERED WATERFALL

Finish = Camp Site

- Heading = 142° from trail
- Distance = 250 YARDS (25 units of measurement)

PLOTTER

- **UNITS OF MEASURE SCALE**
- **UNITS =** yards or meters
- **UNITS =** miles or kilometers
- **UNITS =** foot steps or clock time
- **UNITS =** any measurement desired

Expert Land Navigation Supplement

- **START = FORK IN TRAIL**
 - Travel plan 142° / 250 YARDS

START POINT | FORK IN TRAIL / HEADING 142° / 250 YARDS | FINISH POINT | CAMP SITE / BACK HEADING TO TRAIL 322° / 250 YARDS

<table>
<thead>
<tr>
<th></th>
<th>L / R</th>
<th>Heading</th>
<th>Start</th>
<th>Stop</th>
<th>Elapse Time</th>
<th>Speed</th>
<th>UNITS</th>
<th>Terrain Features / NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>100</td>
<td>0600</td>
<td>0615</td>
<td>15 MIN</td>
<td>200 YPH</td>
<td>50 yards</td>
<td>Open field</td>
</tr>
<tr>
<td>2</td>
<td>R</td>
<td>135</td>
<td>0615</td>
<td>0700</td>
<td>45 MIN</td>
<td>100 YPH</td>
<td>70 yards</td>
<td>Tree and brush / pond with fish</td>
</tr>
<tr>
<td>3</td>
<td>R</td>
<td>270</td>
<td>0700</td>
<td>0755</td>
<td>55 MIN</td>
<td>150 YPH</td>
<td>120 yards</td>
<td>Trees (no brush) / 5 min stop</td>
</tr>
<tr>
<td>4</td>
<td>L</td>
<td>163</td>
<td>0755</td>
<td>0910</td>
<td>1 H / 15 M</td>
<td>55 YPH</td>
<td>60 yards</td>
<td>Rocky ground and boulders</td>
</tr>
<tr>
<td>5</td>
<td>L</td>
<td>40</td>
<td>0940</td>
<td>1005</td>
<td>25 MIN</td>
<td>100 YPH</td>
<td>40 yards</td>
<td>30 min rest waterfall / Trees and brush</td>
</tr>
<tr>
<td>6</td>
<td>R</td>
<td>107</td>
<td>1005</td>
<td>1120</td>
<td>1 H / 15 M</td>
<td>120 YPH</td>
<td>150 yards</td>
<td>Trees / Swamp ankle deep</td>
</tr>
<tr>
<td>7</td>
<td>R</td>
<td>190</td>
<td>1120</td>
<td>1150</td>
<td>45 MIN</td>
<td>90 YPH</td>
<td>70 yards</td>
<td>Several small mounds to cross / some brush / no trees</td>
</tr>
</tbody>
</table>

Notes

Pond from camp is 168° / 130 yards.

PART 4 Expert Land Navigation Supplement

EXAMPLE
START = CAMP SITE
FINISH = SOUTH OF CAMP SITE

* Time not tracked / casual exploration of surrounding area.

Intermediate Landmarks used to stay on course.
Casual exploration of surrounding area.

FINISH = 193° / 145 METERS SOUTHERN CAMP SITE / BACK HEADING IS 13°

UNITS = yards or meters
UNITS = miles or kilometers
UNITS = foot steps or clock time
UNITS = any measurement desired
NAVIGATING DIFFERENT TERRAINS

DEAD RECKONING (advanced – compass and plotter)

1. The Coordinate Chart is for…
 - LEG / ROUTE Headings
 - Units of Measurements
 - VERTICAL and HORIZONTAL numbers

2. Compass Card is in increments of 10° degrees.
 - Degrees can be in any increment 1°, 5°, or 10°, etc.

3. The CIRCLES equal the Units of Measurement.

4. Units of Measurements can be any number and size of squares. Here the squares are 40 x 40 to get 20<0>20.
 - 10 x 10 = 5<0>5
 - 50 x 50 = 25<0>25
 - 200 x 200 = 100<0>100
 - The squares can be any size, just as long it can fit on the paper.

5. Units of Measurement numbers can be any value. Yard, pace count, time, decimal sys, etc.
 - 1 = 0.1 1 10 100 1000
 - 5 = 0.5 5 50 500 5000
 - 10 = 1.0 10 100 1000 10000
 - 15 = 1.5 15 150 1500 15000
 - 20 = 2.0 20 200 2000 20000
NAVIGATING DIFFERENT TERRAINS

DEAD RECKONING (advanced – compass and plotter)

Coordinate Chart being used…

1. **LEG / ROUTE** - draw line or circle
 - Units of Measurements
 - Vertical / Horizontal numbers
 - Heading

2. Calculations
 - ROUTE = 135° / 16 UNITS.
 - LEG 1 = 190° / 5 UNITS
 - LEG 2 = 235° / 6 UNITS
 - LEG 3 = 100° / 17.5 UNITS

ROUNDING NUMBERS – numbers can be rounded up and down. Round in increments of **0.5** (0, 0.5, 1.5, 2.0, 2.5, etc.)

Round to **down** if 0.1, 0.2, 0.3
Round to **0.5** if 0.4, 0.5, 0.6, 0.7
Round to **up** if 0.8, 0.9
PLOTTER being used…

1. To draw PATH TRAVELED
 - Draw lines to UNITS OF MEASURE SCALE

<table>
<thead>
<tr>
<th>#</th>
<th>L / R</th>
<th>Heading</th>
<th>Start</th>
<th>Stop</th>
<th>Elapsed Time</th>
<th>Speed</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R</td>
<td>190°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50 YARDS</td>
</tr>
<tr>
<td>2</td>
<td>R</td>
<td>235°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60 YARDS</td>
</tr>
<tr>
<td>3</td>
<td>L</td>
<td>100°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>175 YARDS</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE

UNITS = yards or meters

UNITS = miles or kilometers

UNITS = foot steps or clock time

UNITS = any measurement desired
PART 4 Expert Land Navigation Supplement

1. To draw PATH TRAVELED
 - Draw lines to UNITS OF MEASURE SCALE
 - Use Lensatic Compass for HEADINGS and ruler to draw straight UNITS OF MEASURE lines.

2. Write information about lines.
 - **ROUTE** = 135° / 160 YARDS (16 UNITS)
 - **LEG 1** = 190° / 50 YARDS (5 UNITS)
 - **LEG 2** = 235° / 60 YARDS (6 UNITS)
 - **LEG 3** = 100° / 175 YARDS (17.5 UNITS)

PLOTTER being used...

1. To draw PATH TRAVELED
 - Draw lines to UNITS OF MEASURE SCALE
 - Use Lensatic Compass for HEADINGS and ruler to draw straight UNITS OF MEASURE lines.

2. Write information about lines.
 - **ROUTE** = 135° / 160 YARDS (16 UNITS)
 - **LEG 1** = 190° / 50 YARDS (5 UNITS)
 - **LEG 2** = 235° / 60 YARDS (6 UNITS)
 - **LEG 3** = 100° / 175 YARDS (17.5 UNITS)

NOTE

UNITS = yards or meters
UNITS = miles or kilometers
UNITS = foot steps or clock time
UNITS = any measurement desired
PLOTTER being used…

1. To draw PATH TRAVELED
 • Draw lines to UNITS OF MEASURE SCALE
 • Use Lensatic Compass for HEADINGS and ruler to draw straight UNITS OF MEASURE lines.

2. Write information about lines.
 • ROUTE = 135° / 160 YARDS (16 UNITS)
 • LEG 1 = 190° / 50 YARDS (5 UNITS)
 • LEG 2 = 235° / 60 YARDS (6 UNITS)
 • LEG 3 = 100° / 175 YARDS (17.5 UNITS)

3. Add any other information on the sheet.
 • Left / Right turns
 • Elapse Time
 • Notes
 • Symbols

ROUTE = CAMP SITE / HEADING 135° / 160 YARDS

CLIFF panorama view of the valley below.

NOTE
UNITS = yards or meters
UNITS = miles or kilometers
UNITS = foot steps or clock time
UNITS = any measurement desired
PART 4 Expert Land Navigation Supplement

FINISH = CAMP SITE
Heading = 142° from trail
Distance = 250 YARDS (25 units of measurement)

* YPH = Yards Per Hour

START = FORK IN TRAIL
Travel plan 142° / 250 YARDS

LEG 1 = 100° / 50 YARDS
LEG 2 = 135° / 70 YARDS
LEG 3 = 270° / 120 YARDS
LEG 4 = 163° / 60 YARDS
LEG 5 = 40° / 40 YARDS
LEG 6 = 107° / 150 YARDS
LEG 7 = 190° / 70 YARDS

DISCOVERED POND WITH FISH
(took 30 min rest)

CROSSED SWAMP (bush too thick to go around / swamp ankle deep)

DISCOVERED WATERFALL
(took 30 min rest)

NOTE
UNITS = yards or meters
UNITS = miles or kilometers
UNITS = foot steps or clock time
UNITS = any measurement desired

TERRAIN FEATURES / NOTES

START POINT	FORK IN TRAIL / HEADING 142° / 250 YARDS	FINISH POINT	CAMP SITE / BACK HEADING TO TRAIL 322° / 250 YARDS
1 | L | 100 | 0600 | 0615 | 15 MIN | 200 YPH | 50 yards | Open field
2 | R | 135 | 0615 | 0700 | 45 MIN | 100 YPH | 70 yards | Tree and brush / found pond with fish
3 | R | 270 | 0700 | 0755 | 55 MIN | 150 YPH | 120 yards | Trees (no brush) / one 5 min stop
4 | L | 163 | 0755 | 0910 | 1 H / 15 M | 50 YPH | 60 yards | Rocky ground and big boulders
5 | L | 40 | 0940 | 1005 | 25 MIN | 100 YPH | 40 yards | 30 min rest waterfall / Trees and brush
6 | R | 107 | 1005 | 1120 | 1 H / 15 M | 120 YPH | 150 yards | Trees / Swamp ankle deep
7 | R | 190 | 1120 | 1150 | 45 MIN | 90 YPH | 70 yards | Several small mounds to cross / some brush / no trees

EXAMPE

NOTES
Intermediate Landmarks used to stay on course.

Speed was calculated as group speed (3 people in group).

Pond from camp is 168° / 130 yards.
Start Point to Finish Point

Route Details

- **Start Point:** CAMP SITE
- **Finish Point:** SOUTH OF CAMP SITE
- **Total Distance:** 193° / 145 PACES to get back to camp site

Route Instructions

1. **Leg 1:**
 - Heading: 230°
 - Distance: 70 Paces
 - Terrain: Up hill terrain with loose gravel
 - **Notes:**
 - Intermediate Landmarks used to stay on course.

2. **Leg 2:**
 - Heading: R 281°
 - Distance: 90 Paces
 - Terrain: Flat clear terrain

3. **Leg 3:**
 - Heading: R 80°
 - Distance: 45 Paces

4. **Leg 4:**
 - Heading: R 206°
 - Distance: 70 Paces

5. **Leg 5:**
 - Heading: L 180°
 - Distance: 105 Paces
 - Notes: Thick brush and trees

6. **Leg 6:**
 - Heading: L 67°
 - Distance: 90 Paces

Units of Measurement

- **UNITS = yards or meters**
- **UNITS = miles or kilometers**
- **UNITS = foot steps or clock time**
- **UNITS = any measurement desired**

Example Table

<table>
<thead>
<tr>
<th>#</th>
<th>L/R</th>
<th>Heading</th>
<th>Start</th>
<th>Stop</th>
<th>Elapse Time</th>
<th>Speed</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>230°</td>
<td>0815</td>
<td>0830</td>
<td>15 Min</td>
<td>PACES</td>
<td>55 Paces</td>
</tr>
<tr>
<td>2</td>
<td>R</td>
<td>281°</td>
<td>0835</td>
<td>0850</td>
<td>15 Min</td>
<td>PACES</td>
<td>90 Paces</td>
</tr>
<tr>
<td>3</td>
<td>R</td>
<td>80°</td>
<td>0850</td>
<td>0900</td>
<td>10 Min</td>
<td>PACES</td>
<td>45 Paces</td>
</tr>
<tr>
<td>4</td>
<td>R</td>
<td>206°</td>
<td>0900</td>
<td>0920</td>
<td>20 Min</td>
<td>PACES</td>
<td>70 Paces</td>
</tr>
<tr>
<td>5</td>
<td>L</td>
<td>180°</td>
<td>1000</td>
<td>1030</td>
<td>30 Min</td>
<td>PACES</td>
<td>105 Paces</td>
</tr>
<tr>
<td>6</td>
<td>L</td>
<td>67°</td>
<td>1030</td>
<td></td>
<td></td>
<td>PACES</td>
<td>90 Paces</td>
</tr>
</tbody>
</table>

Terrain Features

- Up hill terrain with loose gravel
- Flat clear terrain
- Thick brush and trees
Here you can use the PROTRACTOR to calculate Headings and draw lines. The paper does not have to be oriented to NORTH.
Intermediate Landmarks used to stay on course.

This process can be used WITHOUT A COMPASS. Just use your body as a reference for directions.

* FIRST find NORTH using other techniques.*

REMEMBER THIS METHOD WITHOUT A COMPASS IS A VERY CRUDE ESTIMATE ACCURACY IS NOT GUARANTEED BUT IT WILL GET YOU NEAR YOUR DESTINATION

Example

<table>
<thead>
<tr>
<th>#</th>
<th>L/R</th>
<th>Heading 135° / 250 PACES</th>
<th>FINISH POINT</th>
<th>Terrain Features / NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>R</td>
<td>225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>L</td>
<td>135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

UNITS = yards or meters
UNITS = miles or kilometers
UNITS = foot steps or clock time
UNITS = any measurement desired

PART 4 Expert Land Navigation Supplement

Your Body Front

Use your body as an estimated compass in relation to NORTH

NOTE

LEG 1 = 135° / 50 SPACES
LEG 3 = 225° / 60 SPACES
LEG 4 = 135° / 90 SPACES
LEG 5 = 180° / 35 SPACES

Plotter

Units of Measure Scale

FINISH POINT = V ** , H ** / LOCATION ;
Any Questions?
Note:

Prior to being issued any training equipment, you will be required to sign a “statement of liability” agreeing to pay for anything you damage or lose.

All items will be inspected and inventoried prior to your signature and at the end of the training day too.

If you do not intend to sign this statement, then you may be denied training.

* You may use your own equipment.